REACTIONS OF NICKEL—CARBENE COMPLEXES GENERATED FROM NICKELACYCLE COMPLEXES

Akira Miyashita

Chemical Materials Center, Institute for Molecular Science, Okazaki 444, Japan R. H. Grubbs

California Institute of Technology, Pasadena, California 91125, U.S.A <u>Summary</u>: Nickel carbene species, generated from nickelacyclobutane complexes, reacted with hydrogen and carbon monoxide to give methane and ketene, respectively.

Recently, nickel-carbene complexes and nickelacyclobutane complexes have been suggested to be important intermediates for olefin metathesis^{1,2} and cyclopropanation reactions.³ Nickelacyclobutane complex 1 is believed to be in equilibrium with olefin-coordinated nickelcarbene complex 2 on the basis of the available experimental evidence (eq. 1)^{1,2}. In this communication, some new reactions of nickel-carbene complexes with H₂ and CO will be reported.

When 1 in toluene was pyrolyzed in the presence of H_2 by raising the temperature from -50 °C to 50 °C, methane, 2-methylpropane, 1, 1-dimethylcyclopropane, and 2, 2-dimethylpropane were produced in 32% (per Ni), 37%, 19%, and 8% yield, respectively. In the absence of H_2 , it decomposed on heating at 49 °C to give ethylene (15%), 2-methylpropene (26%), 1, 1dimethylcyclopropane (47%), 3-methyl-1-butene (6%), and 2, 2-dimethylpropane (6%). The origin of the hydrogen atoms in the conversion of carbene species of 2 to methane was established to be an added H_2 by deuterium labeling experiments; by replacing H_2 by D_2 were obtained methane- d_2 and 2-methylpropane- d_2 of satisfactory isotopic purities.⁴ The absence of 2, 2-dimethylpropane reflects that the species 2 appears to be more kinetically labile toward H_2 than the metallacyclobutane 1. The reaction of 1 with CO resulted in the formation of ketene dimer (11%) and 2-methylpropene. No cyclobutanones were obtained. The reaction is most reasonably interpreted in terms of a nucleophilic attack of the carbenic carbon in 2 to the coordinated CO molecule to form nickel-ketene complex 3.⁵ Attempted methylene transfer to

$$\stackrel{1}{\underset{}{\sim}} + CO \xrightarrow{-i-C_4H_8} [L_2Ni \bigvee_{CO}^{CH_2}] \longrightarrow \frac{1}{2}(CH_2=C=O)_2 + Ni(CO)_2L_2 \qquad (2)$$

$$\stackrel{3}{\underset{}{\sim}} \qquad L=P(C_6H_5)_3$$

acetone or diphenylmethylphosphine failed.

Carbon monoxide was converted into ethanol (14% per Ni) by the reaction with $\frac{1}{2}$ in the presence of H_2 followed by hydrolysis. Two deuteriums were incorporated into ethanol when the reaction was carried out in the presence of D_2 , indicating that the reaction proceeds via 3

 $\stackrel{1}{\sim} + CO + H_2 \longrightarrow C(CH_3)_4 + CH_4 + i - C_4H_8 + C_2H_5OH$ (3)

followed by successive hydrogenation to alcohol. The above results suggest that other Fischer-Tropsch type reactions may also proceed by way of metal-ketene complexes.⁷

Nickelacyclohexane complex which was reported to generate nickel carbene complexes^{1,2} was allowed to react with CO to yield cyclohexanone (62%) as a mojor product in addition to ketene dimer (up to 6%). By contrast, no experimental evidence of the formation of carbenoid species in palladium² or platinum⁸ analog was obtained throughout the reaction with H₂ or CO. Acknowledgment. The authors acknowledge Dr. H. Takaya for helpful discussions. This work was supported by the National Science Foundation (CHE 7904814).

REFERENCES AND NOTES

- (1) (a) R. H. Grubbs, "Progress in Inorganic Chemistry", S. J. Lippard, ed., John Wiley & Sons, Inc.: New York, Vol. 24, 1978; (b) R. H. Grubbs and A. Miyashita, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>100</u>, 7418 (1978).
- (2) (a) R. H. Grubbs and A. Miyashita, "Fundamental Research in Homogenous Catalysis", M. Tsutsui, ed., Plenum Press, New York 1979, p 51.; (b) A. Miyashita and R. H. Grubbs, to be published.
- (3) R. Noyori, H. Kawauchi, and H. Takaya, Tetrahedron Lett., 1749 (1974).
- (4) Isolated by glc. The isotopic purity was determined by mass spectroscopy. The accuracy of these determination varied with the sample, but was within $\pm 4\%$.
- (5) Formation of an iron-ketene complex has been suggested in a gas phase reaction of (π-C₅H₅)Fe(CH₂)(CO)⁺. A. E. Stevens and J. L. Beachamp, <u>J. Am. Chem. Soc</u>., <u>100</u>, 2584 (1978).
- (6) (a) F. N. Tebbe, G. W. Parshall, and G. S. Reddy, J. Am. Chem. Soc., 100, 3611 (1978);
 (b) R. R. Schrock, J. Am. Chem. Soc., 98, 5399 (1976); (c) S. H. Pine, R. Zahler, D. A. Evans, and R. H. Grubbs, J. Am. Chem. Soc., 102, 4270 (1980).
- (7) C. Masters, "Advances in Organometallic Chemistry", F. G. A. Stone and R. West, eds., Academic Press, New York 1979 Vol. 17 p 16.
- (8) P. Foley and G. M. Whitesides, J. Am. Chem. Soc., 101, 2732 (1979).

(Received in Japan 4 November 1980)